Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Gene ; 901: 148165, 2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38219875

RESUMO

Long non-coding RNAs (lncRNAs) play important roles in cancer progression, influencing processes such as invasion, metastasis, and drug resistance. Their reported cell type-dependent expression patterns suggest the potential for specialized functions in specific contexts. In breast cancer, lncRNA expression has been associated with different subtypes, highlighting their relevance in disease heterogeneity. However, our understanding of lncRNA function within breast cancer subtypes remains limited, warranting further investigation. We conducted a comprehensive analysis using the TANRIC dataset derived from the TCGA-BRCA cohort, profiling the expression, patient survival associations and immune cell type correlations of 12,727 lncRNAs across subtypes. Our findings revealed subtype-specific associations of lncRNAs with patient survival, tumor infiltrating lymphocytes and other immune cells. Targeting of lncRNAs exhibiting subtype-specific survival associations and expression in a panel of breast cancer cells demonstrated a selective reduction in cell proliferation within their associated subtype, supporting subtype-specific functions of certain lncRNAs. Characterization of HER2 + -specific lncRNA LINC01269 and TNBC-specific lncRNA AL078604.2 showed nuclear localization and altered expression of hundreds of genes enriched in cancer-promoting processes, including apoptosis, cell proliferation and immune cell regulation. This work emphasizes the importance of considering the heterogeneity of breast cancer subtypes and the need for subtype-specific analyses to fully uncover the relevance and potential impact of lncRNAs. Collectively, these findings demonstrate the contribution of lncRNAs to the distinct molecular, prognostic, and cellular composition of breast cancer subtypes.


Assuntos
Neoplasias da Mama , RNA Longo não Codificante , Humanos , Feminino , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , RNA Longo não Codificante/metabolismo , Proliferação de Células/genética , Apoptose , Regulação Neoplásica da Expressão Gênica
2.
Mol Oncol ; 18(1): 91-112, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37753740

RESUMO

Aldehyde dehydrogenase 1A3 (ALDH1A3) is a cancer stem cell marker that promotes metastasis. Triple-negative breast cancer (TNBC) progression has been linked to ALDH1A3-induced gene expression changes. To investigate the mechanism of ALDH1A3-mediated breast cancer metastasis, we assessed the effect of ALDH1A3 on the expression of proteases and the regulators of proteases that degrade the extracellular matrix, a process that is essential for invasion and metastasis. This revealed that ALDH1A3 regulates the plasminogen activation pathway; it increased the levels and activity of tissue plasminogen activator (tPA) and urokinase plasminogen activator (uPA). This resulted in a corresponding increase in the activity of serine protease plasmin, the enzymatic product of tPA and uPA. The ALDH1A3 product all-trans-retinoic acid similarly increased tPA and plasmin activity. The increased invasion of TNBC cells by ALDH1A3 was plasminogen-dependent. In patient tumours, ALDH1A3 and tPA are co-expressed and their combined expression correlated with the TNBC subtype, high tumour grade and recurrent metastatic disease. Knockdown of tPA in TNBC cells inhibited plasmin generation and lymph node metastasis. These results identify the ALDH1A3-tPA-plasmin axis as a key contributor to breast cancer progression.


Assuntos
Melanoma , Neoplasias de Mama Triplo Negativas , Humanos , Ativador de Plasminogênio Tecidual/metabolismo , Neoplasias de Mama Triplo Negativas/genética , Fibrinolisina/metabolismo , Aldeído Desidrogenase , Ativador de Plasminogênio Tipo Uroquinase/metabolismo , Plasminogênio/metabolismo
3.
Cancers (Basel) ; 15(2)2023 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-36672441

RESUMO

Aldehyde dehydrogenase 1A3 (ALDH1A3) is one of 19 ALDH enzymes expressed in humans, and it is critical in the production of hormone receptor ligand retinoic acid (RA). We review the role of ALDH1A3 in normal physiology, its identification as a cancer stem cell marker, and its modes of action in cancer and other diseases. ALDH1A3 is often over-expressed in cancer and promotes tumor growth, metastasis, and chemoresistance by altering gene expression, cell signaling pathways, and glycometabolism. The increased levels of ALDH1A3 in cancer occur due to genetic amplification, epigenetic modifications, post-transcriptional regulation, and post-translational modification. Finally, we review the potential of targeting ALDH1A3, with both general ALDH inhibitors and small molecules specifically designed to inhibit ALDH1A3 activity.

4.
Nanotoxicology ; 16(3): 355-374, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35787735

RESUMO

Gold nanoparticles (AuNP) are promising anti-cancer agents because of their modifiable properties and high biocompatibility. This study used multiple parallel analyses to investigate the cytotoxic properties of 5 nm AuNP conjugated to four different ligands with distinct surface chemistry: polyethylene glycol (PEG), trimethylammonium bromide (TMAB), 4-dimethylaminopyridine (DMAP), and carboxyl (COOH). We used a range of biochemical and high-content microscopy methods to evaluate the metabolic function, oxidative stress, cell health, cell viability, and cell morphology in SKOV3 ovarian cancer cells. Each AuNP displayed a distinct cytotoxicity profile. All AuNP species assessed exhibited signs of dose-dependent cytotoxicity when morphology, clonogenic survival, lysosomal uptake, or cell number were measured as the marker of toxicity. All particles except for AuNP-COOH increased SKOV3 apoptosis. In contrast, AuNP-TMAB was the only particle that did not alter the metabolic function or induce significant signs of oxidative stress. These results demonstrate that AuNP surface chemistry impacts the magnitude and mechanism of SKOV3 cell death. Together, these findings reinforce the important role for multiparametric cytotoxicity characterization when considering the utility of novel particles and surface chemistries.


Assuntos
Nanopartículas Metálicas , Neoplasias Ovarianas , Morte Celular , Feminino , Ouro/química , Ouro/toxicidade , Humanos , Ligantes , Nanopartículas Metálicas/química , Nanopartículas Metálicas/toxicidade , Neoplasias Ovarianas/tratamento farmacológico , Polietilenoglicóis/química
5.
Biomedicines ; 10(3)2022 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-35327452

RESUMO

The regulatory and functional roles of non-coding RNAs are increasingly demonstrated as critical in cancer. Among non-coding RNAs, microRNAs (miRNAs) are the most well-studied with direct regulation of biological signals through post-transcriptional repression of mRNAs. Like the transcriptome, which varies between tissue type and disease condition, the miRNA landscape is also similarly altered and shows disease-specific changes. The importance of individual tumor-promoting or suppressing miRNAs is well documented in breast cancer; however, the implications of miRNA networks is less defined. Some evidence suggests that breast cancer subtype-specific cellular effects are influenced by distinct miRNAs and a comprehensive network of subtype-specific miRNAs and mRNAs would allow us to better understand breast cancer signaling. In this review, we discuss the altered miRNA landscape in the context of breast cancer and propose that breast cancer subtypes have distinct miRNA dysregulation. Further, given that miRNAs can be used as diagnostic and/or prognostic biomarkers, their impact as novel targets for subtype-specific therapy is also possible and suggest important implications for subtype-specific miRNAs.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...